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Abstract—Demand Response (DR) is getting the focus of the 

energy efficiency directives in European energy commission. It 

counts as an important instrument for improving efficiency of the 

energy system from final consumption to generation, 

transmission and distribution system. Integration of the DR into 

the electricity market is one of the measures which can take part 

in ensuring the reliability and security of the energy system in 

near future. In this regard various methods and tools developed 

to analyze the effect of DR in the different domains which range 

across voltage regulation, regulating reserve, market efficiency 

and transmission congestion management. This paper will not 

introduce a new method but will analyze the potential of DR in 

Austrian residential sector using GridLAB-D. A case-study 

generator is developed to generate any desired test cases and the 

results were analyzed in order to assess the residential demand 
response potential.  
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I.  INTRODUCTION 

Rapid growth and uptake of renewable energy resources 

create new challenges for the power system. The stochastic 

and intermittent nature of renewable resources increases the 

need of flexibility in the energy system. Since the ability of 
the current power system in response to the brisk dynamic 

changes of generation side is limited, demand side 

management can play an important role by incrementing the 

degrees of network flexibility in order to enhance the 

reliability and stability of the electricity grid.  

Demand response is not a new approach in the history of 

energy systems. In 1980, Schweppe et.al. introduced 

homeostasis control concept in order to keep the state of 

equilibrium in the power system with DR measures which 

based on shifting load according to the frequency deviation in 

the grid and real time price of the electricity [1]. In 1981, 

following the rising price of oil and gas, load management 
solution presented for reducing the peak demand as well as the 

operation of oil-gas fired generators [2]. In 1986, Rosenfeld 

explored the effect of dynamic pricing on the peak load 

reduction [3]. The potential of 10-20% for peak shaving in 

household sector has been estimated. In this era, 

implementation of DR was limited to the intensive energy 

consuming industries because of lack of installed enabling 

technologies like interval meters in small business and 

residential sectors. The large industrial and commercial (I&C) 

have long participated in the utilities program such as 

conventional direct control load (DCL) and interruptible tariffs 

and provided DR services. 

By emerging the idea of smart grid and massive rollout of 

smart meters as a major component of smart grids, DR again 

got the focus of the research works and energy industries and 

has been introduced by European energy commission as a key 

instrument for improving energy efficiency of the energy 
system. Although results of some investigations declare that 

I&C customers are still of big interest for utilities because of 

their large potential and easy coordination, at the same time 

the carried out studies mentioned although the potential of 

individual households are not considerable, the aggregation is 

also not negligible. By introducing smart grid, above all 

advances metering infrastructure (AMI), access on small 

business and residential consumers is also possible and 

considerable potential in these sectors would be achieved by 

aggregating the individual available DR potential. Introducing 

novel energy market design, billing system and regulatory 
structure are additional drivers for integration of DR in various 

energy sectors. Referring to the study supported by the Federal 

Energy Regulatory Commission (FERC) if there is no 

regulatory and market barrier for participating in the DR 

programs, the impact of the residential sector would be even 

higher than that of I&Cs [4]. In [5] the residential DR is also 

addressed as a long-term solution and the potential range of 

10-23% were calculated. 

In order to assess the potential of DR, many worldwide 

demonstration projects were carried out and are ongoing. The 

GridWise project is an American demonstration project which 

had two major research focuses, energy pricing and smart 
appliances demonstration project. For the first time a dynamic 

real time price for electricity which varies each 5 min. was 

tested. The grid friendly appliances were also able to respond 

to the under-frequency events once a day. The demonstration 

project shows 15% peak demand reduction as well as 10% 

cost saving in the energy bill. 

E-Energy is a ICT-based project funded by the Federal 

Ministry of Economics and Technology (BMWi) in Germany 



[6]. In the framework of this project, a platform called 

“internet of energy” is developed in order to better exploit the 

grid’s information and improve stability and reliability of 

energy network. The results of this demonstration project 

show a 10% DR potential achieved by controlling heat pumps, 

washing machine, dryer and dish washer of households. 
EcoGrid is another ongoing large scale Smart Grids 

demonstration project in Europe which introduces a real time 

market-based mechanism in order to release the potential of 

balancing capacity through DR measures. 

On the one hand, demonstration projects are very helpful 

in order to foresee implementation problems of suggested DR 

programs prior to their execution but on the other hand they 

are too expensive and each can just focus on the limited 

issues. The individual enabling technologies in various 

demonstration projects have different impacts on the operation 

of the distribution/transmission system and can exhibit 

unexpected behaviors. In this regard, a simulation tool for 
modeling the DR resources and their interaction with the 

electricity grid and energy market is required. Most of the 

developed simulation tools are either implemented considering 

a single, monolithic domain or they are based on a manually 

integration of different simulation tools and models. The 

following tools are developed based on multi agent algorithm 

and are able to simulate smart grids of any size. 

The Mosaik is a framework which allows simulation of a 

Smart Grid based on the existing heterogeneous models of 

consumers and producers of any kind as well as the 

components of the power grid [8]. It offers a powerful test bed 
for evaluating ICT based Smart Grid coordination mechanisms 

and analyzes their potential in a real world environment 

whereas the market module is still not integrated. 

GridLAB-D is another powerful simulation tool developed 

by the Pacific Northwest National Laboratory (PNNL) in 

cooperation with industrial partners. It is an open-source 

simulation tool which is utilized for simulating the impacts of 

smart grid technologies. Smart grid energy technologies 

ranges from power flow calculations with distribution 

automation to distributed energy resources and energy market 

can be modeled by GridLAB-D [9]. 

The aim of this paper is to estimate the market based DR 
potential in residential sector by using GridLAB-D as a 

validated developed tool. The paper is organized as follows: 

chapter II gives a general description about Demand Response 

Resources in domestic sector. Chapter III gives an overview 

about the implemented control strategies in GridLAB-D and 

describes the case study generator which is developed in this 

paper in order to easily create various cases in energy market 

and DR component in residential sector; Chapter IV assesses 

the results of executed simulations for generated case studies. 

Chapter V is a comprehensive conclusion of the presented 

work in this paper. 

II. DEMAND RESPONSE RESOURCES IN DOMESTIC SECTOR 

There are numerous studies that analyze the demand 

response potential of domestic sector. O’Dwyer et.al. 

estimated this potential considering wet-, cool- and 

space/water heating devices up to 6% of the total demand. The 

results are based on an incentive-based method that looks 

specifically at the ability of residential loads to provide 

reserves through the use of direct load control by a third party 

aggregator [10]. Schneider et.al. extended the direct load 

control strategy according to developed communication 
technologies and introduced an automated control system 

which operates based on a price signal [11]. The saving 

potential increases up to 10% by using automated control 

system for space heating and cooling system. 

Various studies show that the probability of accessing 

space cooling/heating within a day is higher than that of the 

other household devices [12][13][14]. A market based thermal 

resources distribution in the building can control the thermal 

energy need in the building without imposing any extra costs 

and technical changes in the existing building management 

systems. Thermostat controlled devices present a large portion 

of the domestic load and can be characterized as very flexible 
resources since they are connected to the naturally integrated 

heating storage of building. They can operate, under 

aggregation, in a way similar to battery storage since they are 

not characterized by any time constraints like the other 

investigated devices. 

Heat pumps are one of the demand response resources 

which support the well-known EU energy target 20-20-20 by 

reducing the energy demand and consequently greenhouse gas 

(GHG) emission. Figure 1 presents the market development of 

heat pumps in some EU countries [7]. Since EU directives 

support their market integration as a medium for increasing 
energy efficiency and optimal integration of renewable energy 

sources, they would be a potential candidate for participating 

in the domestic DR programs.  
 

 
Fig. 1. Penetration of Heat pumps in some EU countries  

 

Besides proper DR resources, type of load control action is 

another issue which should be considered in the DR programs. 

DR actions can be executed either manually or automatically. 

Generally, manually executed programs are more suitable for 
large I&C sector while for achieving reliable results by 

aggregating many households and small businesses, automated 

execution actions is likely to be the better choice. DR events 

will be initiated after receiving an external control signal. 

Price signal is one of the triggers for DR control systems since 

it includes information about the availability of generation and 
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requested demand and can support the stability of the energy 

system. The focus of this paper is assessing the potential of 

residential demand response including space heating/cooling 

devices based on an automated control system using dynamic 

price signal as a trigger for adjusting the heating/cooling 

setpoint in the desired range defined by the users. 

III. GRIDLAB-D TOOL FOR DR ANALYSIS 

GridLAB-D is an open source simulation environment 

developed by the US Department of Energy at Pacific 

Northwest National Laboratory which includes the physical 

model of end-use devices as well as distribution automation 

control models which utilize price signal as a means to control 

end use devices.  

The residential-end-user model implemented in this tool is 

using the equivalent thermal parameter (ETP) model to 

calculate indoor air temperature as a function of climate data, 

building parameters and installed HVAC system. 

The tool also features energy market model which makes it 
possible to analyze various market strategies and assess their 

effect on the operation of grid and end-use devices and energy 

market itself. 

A. Control strategies 

As described by Schneider in [11], different levels of 
control system developed in this tool among which passive 

and active controller are in the focus of this paper. 

 “Passive controller” is similar to what is currently 
implemented. Customers use their appliances without 
information being sent to or received by the utility. 
The function of household appliances using passive 
controller are price inelastic. 

 “Active controller” is akin to the passive controller 
which is additionally provided by information such as 
dynamic price so that the controllers’ setting can be 
adjusted accordingly. Active controller controls end-
use devices to automatically react to price 
information. End-use appliances alter their consume 
schedule according to the price signal but they are not 
capable of biding back into the market and 
influencing the market price. 

Depending on the type of appliance, a controller may 
reconfigure the thermostat setpoints or directly turn them on 

and off. In this paper the operation of HVAC system in 

residential buildings were controlled by adjusting their 

thermostat setpoints according to the real-time price 

information.  

Naturally, heating occurs when the actual indoor 

temperature drops below the heating setpoint and cooling 

occurs when the indoor temperature exceeds the cooling 

setpoint.  

According to [11], the appliance related variables like 

thermostat setpoint have an intuitive relation to their power 
consumption. The tighter the deadband of the thermostat, the 

more energy is consumed to maintain the indoor temperature 

between the adjusted setpoints. By using a price signal as a 

trigger for control action, in the time of high prices the 

controller lowers the heating setpoint and raises the cooling 

setpoint, thus the deadband gets wider and as a result the 

energy consumption of HVAC decreases. Conversely, at times 

of low prices the controller adjusts higher heating and lower 

cooling setpoint which leads to a tighter deadband and 

consequently preheating and pre-cooling actions which 
increases the power demand. 

B. Case study generator 

GridLAB-D uses special input files, called Grid Lab 

Model (GLM), to describe the simulations and set up the 

related configuration. In GLM file, each component and its 

relationship to others (i.e. transformers, transmission lines, 
houses, controllers, etc.) need to be explicitly defined. The 

input file can get considerably huge in size by simulating a 

complex system. In order to avoid writing each case study 

manually, a generic tool was developed to simplify the 

generation of large GLM input files and to generate any 

desired case study automatically (see Figure 2).  

The tool consists of a number of input masks for 

specifying the relevant GLM parameters such as population 

composition, building parameters, electrical consumer, energy 

market and controller configurations. A VBA-based generator 

defines the related relations between components and creates 
the corresponding GLM simulation file. This greatly 

simplifies the setup process, as new scenarios with minimum 

time effort can be prepared.  
 

 

Fig. 2. Operation diagram of the GLM generator tool 
 

Another advantage of the generator is that it gives direct 

control over any random variable that may be used. Typically, 

a DR case study contains a population of houses with their 

associated end-use appliances such as HVAC system and 

water heater.  

The operation of these appliances is usually defined by 

schedules describing desired indoor temperature and water 
demand respectively. In order to avoid synchronous behavior 

and implement kind of coincident factor, each appliance is 

usually assigned a random initiation time and/or a random 

selection from a number of predefined schedules.  

For a case study with a various number of variables, these 

random properties can be generated and saved once at the 

beginning of a simulation and reloaded for subsequent 



simulation runs, thereby ensuring the consistency of the 

population throughout each scenario.  

IV. DR CASE STUDIES 

A. Capacity of thermal storage for different residential 

buildings 

One of the issues in implementing DR is how practical the 

application of DR measures in various building types is. 

Therefore, three buildings with the same characteristics except 

for their thermal transmittance characteristic, which is based 

on available Austrian building standards [15] [16], were 

simulated: 

1. An energy efficient building with thermal insulation 
according to passive house standards 

2. Building insulated according to current building 

regulations for residential buildings 

3. Building with thermal transmittance characteristics 

typical for 1960’s construction practices 

Figure 3 shows that the annual energy consumption of 

HVAC system in the building is strongly correlated to its 

thermal integrity. Also, the saving potential is highest for the 

well-insulated house while almost negligible for an old, poorly 

insulated building. 
 

 
Fig. 3. Comparison of the annual energy consumption of HVAC in a building 

with good Insulation (passive house standard), statutory Insulation and 

average Insulation built in the 1960’s 
 

Since passive building is not the dominating construction 

standard for the new buildings yet, despite of their better 

insulation, the simulations and analysis from now on are based 

on the Austrian statutory building regulations for residential 
buildings. 

As stated above, indoor air temperature is a function of 

climate data, building parameters and function of HVAC 

system. Figure 4 presents the HVAC average load profile over 

a day for 100 up to 10000 houses. Since the outdoor 

temperature, the thermal resistance and the HVAC system is 

the same for all simulated samples and only average floor area 

is defined by using a normal distributed function, the pattern 

of average energy consumption of HVAC system for different 

sample size are highly correlated.  

In order to perform different scenarios and analyze the 

results, a sample size of 1000 houses has been considered 
which will be scalable for any desired number of households. 

According to the Statistic Austria, in 2012 about 37.700 

dwellings were authorized in new residential buildings among 

which 14000 were detached houses. Based on the study 

carried out by ministry of transport, innovation and technology 

the annual installed number of heat pumps in Austria is about 

12000. Based on these available statistic data the penetration 

rate of 85% for heat pumps in detached houses is considered 
for estimation of DR potential in the following section. 

 

 
Fig. 4. Average power consumption for different population sizes 

 

B. Impact of dynamic price signal 

One essential issue in analyzing the potential of DR is the 

pattern of price signal. It is important to assess which type of 

price signal has a better impact on the response of heat pumps 

and which can optimally exploit the available capacity of 

thermal storage in the building envelope. 
In this regards, the effects of 5 different price signals with 

5 min. time resolution for month January (see Table I) were 

investigated. All price data are based on real clearing prices 

from the Austrian spot market in January 2012 which is 

identified with “base” signal in the following. The other four 

signals introduce additional peak events at pseudo-random 

times. A peak price event occurs when the price reaches a 

price cap for a certain amount of time. In the “base” signal, for 

example, ten peaks with a duration between one and eight 

hours occur during the simulation period in January. The total 

peak duration of 19 hours (2.6% total simulation time) and 

therefore, average peak duration of 1.9 hours was identified in 
the “base” price signal. 

TABLE I.  PRICE SIGNALS 

Price 

signals 

January 2012 

Description 
Number 

of events 

Total event 

duration 

Base Real price signal from 

Austrian spotmarket 2012 

10 19 h 

Half Hour additional half-hour peaks 40 34 h 

Thin Peaks additional peaks, mostly 

one hour in duration 

23 32 h 

Long Noons additional 5h peaks 14 35 h 

Long 

Evenings 

additional 5h peaks 14 35 h 

 

Figure 5 shows the distribution of peak price durations for 

the five different price signals. The table depicts the share of 

total peak duration rather than the individual peak events. 



Therefore the Base signal’s relative share is greater than the 

other signal’s in some categories. In case of 2.5-3.5h peak 

duration for example the actual number of peaks for all signals 

is identical, while the total event duration, and thus the relative 

share of this category, is different. 
 

 
Fig. 5. Distribution of peak price duration 

C. Temperature variation 

Another important issue to consider is the adjustment band 

of indoor temperature, as it is closely related to the 

effectiveness of a controller. Four types of temperature 

controls are considered in the simulation. The main property 

of the HVAC controller investigated in this paper is essentially 

its operational range. The range (measured in °C) specifies the 

maximum deviation from the desired thermostat temperature. 

For example, a range setting of 1°C allows the controller to 

reduce the heating setpoint at times of high prices or decrease 

the cooling setpoint when prices are low by 1°C. Therefore, a 

larger range allows more radical control while a narrow range 
offers only limited controlling possibilities. 

TABLE II.  CONTROLLER BREAKDOWN 

Controller 

  

Description max. setpoint 

deviation at peak 

price (range) 

max. setpoint 

deviation at floor 

price (range) 

1 conventional 

controller 

1°C 1°C 

2 dynamic 

setpoint range 

3°C 1°C 

3 dynamic 

setpoint range 

5°C 1°C 

4 dynamic 

setpoint range 

3°C 0°C 

5 dynamic 

setpoint range 

5°C 0°C 

 

The different range settings for the investigated controllers 

are shown in Table II. Controller 1 features standard settings 

for a HVAC controller with a fixed range of 1°C. Depending 

on the price signal, it can modify the setpoint up to 1°C (but 

does not have to, if the price is not significantly above or 

below the moving average). Although this is a fairly solid 

configuration when aiming to reduce a household’s electricity 

bill, it is less suited for reacting to peak price events due to its 

narrow range. Therefore, controllers 2-5 employ a dynamic 
range, which is directly proportional to the price itself. Thus at 

peak price events, when the price increases to multiples of its 

average, the allowed range of operation is simultaneously 

widened, while on the other hand the controller operates 

within regular boundaries during non-critical times, ensuring a 

stable indoor climate and user comfort. 

In fact, from the critical peak control point of view, the 
controller is not required to adjust the thermostat setpoint 

outside of critical peak times at all. Furthermore, extensive 

setpoint manipulation causes indoor temperature fluctuations, 

which are detrimental to user comfort. Therefore controllers 4 

and 5 were defined with a 0-3°C and 0-5°C range respectively. 

This means that in the duration of low prices these controllers 

have to strictly follow the scheduled setpoint, while they are 

still allowed a wide range during peak price events. The 

effects of these range settings are demonstrated in Figure 6. As 

can be seen, both controllers 2 and 4 have the same range 

available during the peak price event, but the range of 

controller in off-peak duration 4 is very narrow compared to 2, 
forcing it to follow the initial setpoint schedule more tightly. 

 

 
Fig. 6. Setpoint range for controllers 2 and 4 

 

Figure 7 shows a simple example of the indoor 
temperature development during a peak price event on January 

16th for two controllers with maximum range of 3°C and two 

controllers with 5°C. The average outdoor temperature in this 

example is approx. -3°C. The peak price events start at around 

9 am, at which the controllers immediately adjust their 

setpoints to the minimum allowed temperature (i.e. 17°C and 

15°C respectively). Initially, the indoor temperature for all 

cases is just above 20°C, the former setpoint, but begins to 

decrease. Once the indoor temperature reaches the new 

setpoint, the heating system switches on again and the load-

deferring effect of the controller ends.  
 

 
Fig. 7. Indoor temperature at peak price events for various controllers 



As can be seen, the effective duration for which a 

controller can react to a peak price is limited by two major 

factors: the maximum range, which the temperature is allowed 

to drop, and the insulation of a building, which determines the 

rate of decline. In this case, the effective peak duration for the 

3°C controller with standard insulation is only about one-and-
a-half hours, whereas the 5°C controller with passive house 

insulation can defer heating for up to 5 hours. Generally, the 

shorter the peak duration is, the higher the chance that a 

controller can defer heating for the entire duration. 

In terms of user comfort, a temperature variation of 5°C from 

the desired setpoint is not feasible if it occurs during the time 

of use. In fact, many customers may not even accept a 1°C 

drop in the time of active use i.e. when the building is 

occupied.  

For the purpose of this paper the setpoint schedules are not 

divided into “time of active use” and “time of passive use” 

(when the building is not occupied e.g. holidays or working 
hours) but for future research it might be interesting to 

introduce this parameter to the controller and adjust the range 

of the controller accordingly. 

It can be seen in Figure 8 that the controller with higher 

degree of freedom (larger temperature range) has the better 

response in reducing the peak load and the shorter the peak 

price event, the more responsive the controller. 
 

 
Fig. 8. Comparison of average load reduction between controller with 3°C and 

5°C range 

D. Rebound effect 

The effectiveness of each controller can be assessed based 

on different criteria. Controllers 3 & 5 have a better 

performance regarding to peak load reduction while controller 

4 & 5 keep the indoor temperature closer to the desired 
temperature of the consumers. As can be seen in Figure 9, 

indoor temperature drops up to 3°C below the reference 

adjusted temperature in the duration of the peak price but in 

the normal operation of the system the scheduled indoor 

temperature can be fulfilled. 

 
Fig. 9: Fig. 9.Averag indoor temperature of an uncontrolled and controlled 

population at a peak price event on the 4.january 
 

Figure 10 shows the power distribution during this peak 

price event. As can be seen, both controllers 2 and 4 have 

similar load reduction during the peak, but controller 2 due to 

its higher base range, has a larger rebound effect. 

 

 
Fig. 10. consumption profile of heat pumps without controller and with 

controller 2 & 4 
 

In order to find a compromise between the advantages of 

various controllers, the relation between their effective 
demand reduction during peak events and deferred rebound 

effect during off-peak hours was analyzed and depicted in 

Figure 11. Unsurprisingly, control parameters with high 

deferring potential also suffer from higher rebound effects. 

Furthermore, the relative performance of the controller is 

mostly the same for the different price signals. This highlights 

the sensitive relation between controller effectiveness, outdoor 

temperature and building thermal integrity, as discussed in 

section C.  

Regardless to the type of price signal, controller 4 has the 

best ratio of deferring potential to rebound effect compared to 
the other type of controllers. According to the Fig.10, it can 

reduce the demand in a sample of 1000 households equipped 

with controllable heat pumps up to 1.8 MW for an evening 

peak price event. 



 
Fig. 11. Relation between consumption reduction and impact of rebound 

effect for various controller and price signals in January 

E. Day time and Seasonal effect 

Day time and seasonal changes in the outdoor temperature and 

solar gain of the building has also considerable impact on the 

available DR potential of the building. In order to present 

these effects three sample winter days has been selected with 

the average temperature about +8, 0 and -8 degrees which are 

tagged with mild, normal and extreme cold days respectively. 

In order to get more realistic results the permitted setpoint 

range distributed heterogeneously with a uniform distribution 

function in the sample of 1000 buildings as it is described in 

the table III. 
 

Table III DISTRIBUTION OF SETPOINT RANGE IN SAMPLE OF 1000 BUILIDNGS 

Population size Responsiveness Average allowed setpoint 

deviation [°C] 

250 None 0 

500 Moderate 0.5 

250 High 1.5 
 

Based on the results in section C, effective price signal of half 

an hour was applied to every half an hour within a day. Fig.12 

depicts that constrained setpoint setback in the sample reduces 

the maximal DR potential of 1.8 MW to 900 kW. Besides, the 

available potential depends strongly on the time of day. 

Considering the time and type of the day available DR 
potential varies between 0 to 900 kW. 
 

 
Fig. 12. Demand response potential within a day for mild, normal and extreme 

cold days 
 

V. CONCLUSION 

Demand response programs can be used in order to reduce 
the peak load or provide balancing energy in the power system 

by efficient exploiting the stored thermal energy in the 

residential buildings. In this paper, heat pumps combined with 

the available thermal energy storage of the residential 

buildings were used as DR enabling technology which 

response to the price signals by adjusting their setpoint. 

Simulation results confirm that price-based adjustable 

setpoints within the user given deviation range can reduce the 

demand up to 1.8 MW for 1000 households with ±3°C 

deviation range of indoor temperature. However this potential 

will be limited to 900 kW for tighter setpoint range. Time of 

day and seasonal temperature changes has also considerable 
impact on the actual rate of response. DR is an interim short 

term solution for preventing blackouts/brownouts however its 

variability and uncertainty still needs to be discussed. 
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